|
电子表格的检验结果来了!是用 a(1) = 0.9 进行试验的。最左边一列,是 1 + 0.9, (1 + 0.9)*(1 + 0.9 / 2), (1+0.9)*(1+0.9/2)*(1+0.9/3),......
中间一列是 (1 + 1 )^0.9, (2 + 1) ^0.9, (3 + 1)^0.9, ......
最右边一列是第一列(即最左边那一列)除以第二列(即中间那一列)的结果,目的是看两者的误差。
- 1.9 1.86606598307361 1.01818478940948
- 2.755 2.68787537952229 1.02497311482114
- 3.5815 3.4822022531845 1.02851578960547
- 4.3873375 4.25669961260392 1.03068994744409
- 5.17705825 5.01575281246762 1.03215976615343
- 5.9536169875 5.76219877795131 1.03321964703494
- 6.71908202875 6.49801917084989 1.03402003781272
- 7.47497875698437 7.22467405584208 1.03464581228269
- 8.22247663268281 7.94328234724282 1.03514847807681
- 8.96249952962427 8.6547278641645 1.03556110258927
- 9.69579494568443 9.35972570285164 1.03590588586698
- 10.4229795666108 10.0588658697943 1.03619828532656
- 11.1445704596838 10.7526431272433 1.03644939460955
- 11.8610071320921 11.4414780867401 1.03666738179905
- 12.5726675600176 12.1257325320832 1.03685839406006
- 13.2798801102686 12.8057208137257 1.03702714618256
- 13.9829325866946 13.4817184944014 1.03717731478382
- 14.6820792160293 14.1539690253666 1.03731180912691
- 15.3775461262623 14.822688982139 1.03743296137374
- 16.0695357019441 15.4880722271687 1.03754266291161
- 16.7582300891702 16.1502932600767 1.03764246378091
- 17.4437940473636 16.8095099437965 1.03773364635185
- 18.1263772926952 17.4658657449912 1.03781728070899
- 18.8061164411712 18.1194915919424 1.0378942668311
- 19.4831366330534 18.7705074279234 1.0379653670987
- 20.1575529011206 19.4190235197713 1.03803123162178
- 20.829471331158 20.065141567879 1.03809241817175
- 21.4989900525167 20.7089556537613 1.03814940801285
- 22.1662000886292 21.350553053748 1.03820261858454
- 22.8311860912881 21.9900149415495 1.03825241374208
- 23.4940269778094 22.6274169979695 1.03829911208679
- 24.1547964865603 23.2628299425533 1.03834299378922
- 24.8135636634665 23.8963199992312 1.03838430621388
- 25.4703932898523 24.5279493058521 1.03842326858427
- 26.1253462601628 25.1577762757769 1.03846007587394
- 26.7784799166669 25.7858559183209 1.03849490206919
- 27.4298483470723 26.4122401237141 1.03852790291894
- 28.0795026500293 27.0369779173372 1.03855921826321
- 28.7274911727223 27.6601156872496 1.03858897401375
- 29.3738597241085 28.281697388413 1.03861728384602
- 30.0186517668329 28.9017647265068 1.03864425065026
- 30.6619085904078 29.5203573238125 1.038669967781
- 31.3036694678815 30.1375128692923 1.03869452013665
- 31.9439717979063 30.7532672546926 1.03871798509578
- 32.5828512338645 31.3676546982562 1.03874043333166
- 33.2203418014836 31.980707857415 1.03876192952312
- 33.8564760061928 32.5924579316588 1.03878253297694
- 34.4912849313089 33.2029347566236 1.03880229817421
- 35.1247983280064 33.8121668903121 1.03882127525138
- 35.7570446979106 34.4201816922493 1.03883951042485
- 36.3880513690502 35.0270053962784 1.03885704636675
- 37.0178445658222 35.6326631776208 1.03887392253833
- 37.6464494735437 36.2371792147518 1.03889017548635
- 38.2738902981027 36.8405767465814 1.03890583910727
- 38.9001903211626 37.4428781253754 1.03892094488323
- 39.5253719513241 38.0441048658038 1.03893552209325
- 40.1494567716082 38.644277690464 1.0389495980026
- 40.7724655835814 39.2434165721872 1.03896319803302
- 41.3944184484157 39.8415407734076 1.03897634591594
- 42.015334725142 40.4386688828419 1.03898906383066
- 42.6352331063326 41.0348188497061 1.03900137252922
- 43.2541316514245 41.6300080156697 1.03901329144937
- 43.8720478178734 42.2242531447326 1.03902483881699
- 44.4889984903123 42.8175704511883 1.03903603173911
- 45.1050000078705 43.409975625825 1.03904688628844
- 45.720068189796 44.0014838604991 1.0390574175804
- 46.3342183595096 44.5921098712071 1.03906763984333
- 46.947465367209 45.1818679197655 1.03907756648262
- 47.5598236111292 45.7707718342048 1.03908721013936
- 48.171307057558 46.3588350279682 1.03909658274407
- 48.781929259696 46.9460705180036 1.0391056955659
- 49.3917033754422 47.5324909418249 1.03911455925785
- 50.0006421841805 48.1181085736161 1.03912318389831
- 50.6087581026368 48.702935339443 1.03913157902929
- 51.2160631998684 49.286982831635 1.03913975369162
- 51.8225692114458 49.8702623223898 1.03914771645746
- 52.4282875528783 50.4527847766555 1.03915547546024
- 53.0332293323346 51.0345608643348 1.03916303842239
- 53.637405362703 51.6156009718573 1.039170412681
- 54.2408261730334 52.1959152131576 1.03917760521153
- 54.8435020194004 52.7755134400993 1.03918462264983
- 55.4454428952231 53.3544052523773 1.03919147131253
- 56.0466585410749 53.9326000069312 1.03919815721608
- 56.647158454015 54.5101068269 1.03920468609429
- 57.2469518964693 55.0869346101446 1.03921106341479
- 57.8460479046881 55.6630920373639 1.03921729439426
- 58.4444552968056 56.2385875798296 1.03922338401271
- 59.0421826805229 56.8134295067598 1.0392293370267
- 59.6392384604383 57.3876258923535 1.03923515798176
- 60.2356308450427 57.961184622505 1.03924085122399
- 60.8313678534003 58.5341134012152 1.03924642091081
- 61.4264573215314 59.1064197567182 1.03925187102116
- 62.020906908514 59.6781110473373 1.03925720536493
- 62.6147241023189 60.2491944670858 1.03926242759188
- 63.2079162253935 60.8196770510264 1.03926754119992
- 63.8004904400065 61.3895656804017 1.03927254954297
- 64.3924537533674 61.9588670875479 1.03927745583826
- 64.983813022531 62.5275878606027 1.03928226317324
- 65.5745749590995 63.0957344480193 1.03928697451208
- 66.1647461337313 63.6633131628941 1.0392915927017
复制代码
从试验数据观察到,两者的误差还算不错。从最右边一列可以看到,误差是缓慢增大的,但增大的幅度逐渐变小。我们还观察到,(n + 1) ^ a(1) 一列(即中间那一列)比乘积列(即最左边那一列)更小一些。不管那么多了,总之,现在我们要猜测这样的不等式了:
a(n + 1) / a(1) ≤ (n + 1) ^ a(1)
假如成立,这将大功告成。
|
|